RAID-массивы дисков — как создать

Дисковые RAID-массивы — просто о сложном

03 октября 2019

Мало кто знает, но проверенные временем технологии могут помочь в прокачке домашнего и офисного компьютерного железа! Так, созданная уже более 30 лет назад технология RAID, способна значительно изменить работу дисковой подсистемы. “Как это может пригодиться?” — спросите вы.

Во-первых, несмотря на то, что оборудование для компьютеров с каждым годом становится лучше и мощнее, скорость работы HDD в по-прежнему ограничена скоростью вращения механики (шпинделя) в 7200 об/мин (существуют, конечно, и на 10-15тыс. оборотов, но это весьма шумные, горячие и дорогие модели). А во-вторых, достигнуть желанного быстродействия и обеспечить надёжность личных данных, можно попросту объединив работу нескольких жёстких дисков.

Заинтересовали? Тогда узнайте больше!

Что такое RAID-массив

RAID (от англ. Redundant Array of Independent Disks — избыточный массив независимых дисков) — технология объединения нескольких жёстких дисков для повышения их производительности. Файловая система компьютера при этом воспринимает каждый диск как сектор, а сам массив как один элемент.

Для создания RAID-массива понадобиться от двух и более дисков, в зависимости от типа создаваемого рейда и требуемых функций.

Виды RAID-массивов

Существуют так называемые уровни RAID-массивов. Они могут быть базовыми, комбинированными и нестандартными (усовершенствованными).

Среди базовых уровней выделяют:

  • RAID 0 — информация разбивается на блоки и записывается на все диски по очереди;
  • RAID 1 — диски дублируют друг друга, создавая резервные копии данных;
  • RAID 2 — диски разделяются на две группы: для записи данных и для коррекции ошибок;
  • RAID 3 — один из дисков используется для хранения копий данных, остальные разбиваются на блоки или байты для записи и чтения информации;
  • RAID 4 — аналогичен RAID 3, но диски разбиваются только на блоки. Используется для передачи данных небольшого объёма на высоких скоростях;
  • RAID 5 — данные симметрично записываются на все диски, при этом диски взаимозаменяют друг друга в случае отказа одного и них;
  • RAID 6 — три диска используются для записи и чтения информации и два для контроля чётности. Работоспособность массива продолжится даже после одновременного падения двух любых дисков.

Комбинированные типы RAID-массивов представляют собой создание одного вида массива из нескольких других. Например, RAID 10 — это RAID 0 составленный из нескольких RAID 1, а RAID 01 — это RAID 1 из двух объединённых RAID 0.

Проще говоря, такая архитектура — это массив массивов, так как сегменты созданного массива не отдельные диски, а массивы другого уровня.

Нестандартными рейдами являются различные модификации базовых и комбинированных уровней, некоторые из них даже зарегистрированные торговые марки крупных компаний.

В общем, конфигураций рейдов довольно много и для каждого найдется своя подробная и исчерпывающая литература. Большинство из них используются в серверах крупных организаций, но не исключено также и использование дисковых массивов на домашних компьютерах. Поэтому, подробнее хотелось бы остановиться на уровнях 0 и 1, как на самых распространённых комбинаций из всех. Они не используют сложной математики, просты и надёжны в реализации.

Дисковый массив RAID 0 — принцип чередования

Чтобы сделать и настроить нулевой рейд достаточно от двух и более жёстких дисков. RAID 0 используют исключительно для увеличения скорости чтения/записи, отказоустойчивостью такой массив не обладает. Тем не менее, система RAID 0 способна повысить производительность в несколько раз и позволяет использовать полный объём всех задействованных дисков. Это возможно благодаря принципу чередования (striping), при котором информация записывается на каждый блок диска по очереди, соответственно скорость считывания файлов увеличивается во столько раз, сколько дисков используются в массиве.

Зеркальный массив RAID 1

Рейд первого уровня, напротив, создаётся с целью более надёжного хранения информации, но использовать его для большого увеличения производительности не получится (разве что возрастёт скорость чтения), так как, задействуя несколько дисков в массиве, по факту, будет получен объём только одного из них. Поэтому, принцип работы RAID 1 называют зеркалированием (mirroring), ведь жёсткие диски копируют друг друга, обеспечивая бесперебойность работы, даже если выйдет из строя один из них. Стоит отметить, это самое дорого решение, так как половина дисков идет на резерв.

Как создать RAID-массив

Создание дискового массива RAID может выполняться несколькими способами, задействуя в свою структуру как HDD, так и SSD (желательно не одновременно). Тут сразу хотелось бы оговориться, что более целесообразное создание рейдов именно из жёстких дисков, а не твердотельных накопителей. Сам по себе SSD и так обеспечивает высокую производительность и не создаёт таких проблем, как в составе массива: сложности в обновлении прошивки, затруднённое отслеживание работоспособности, накопители изнашиваются равномерно, из-за чего есть вероятность их одновременного выхода из строя. Поэтому, в домашнем использовании с SSD лучше работать как с отдельным накопителем в режиме AHCI. RAID из SSD же может пригодиться в отдельных случаях, вероятнее, для корпоративных целей, где необходимо чтение большого объёма данных.

Теперь, рассмотрим, как объединить диски в RAID-массив. Для этого необходим специальный контроллер, который может быть как физическим адаптером, так и в виде утилиты. В соответствии с этим выделяют следующие способы создания рейдов:

  • Полностью аппаратный, где RAID-контроллер отдельное устройство со своим софтом.
  • Полуаппаратный, когда контроллер встроен в материнскую плату. В этом случае, настройка аппаратного RAID-массива происходит через BIOS.
  • Программный, когда создание массивов происходит через утилиты Linux mdadm или составные тома Windows.

О преимуществах и недостатках того и или иного способа можно говорить долго. К примеру, в сети можно встретить много критики в отношении создания рейдов программным способом, так как полагается, что система будет затрачивать большое количество ресурсов, для обеспечения работы утилиты. Судя по нашему опыту, это может быть справедливо только в отношении рейдов из SSD, а из обычных жёстких дисков более или менее современный компьютер вполне справится с задачей. Интегрирование RAID-контроллера в плату несёт бóльшие риски, на наш взгляд. Есть возможность выхода из строя материнки, затруднены настройка и управление массивом и тд. Полностью аппаратный способ — надёжен и широко применяем, но самый финансово затратный. Помимо покупки нескольких HDD, потратиться на адаптер придется в среднем от 25 до 60-ти тыс. рублей.

Дополнительно по теме, смотрите наше специальное видео, где в комментариях можно начать обсуждение и задать все интересующие вопросы:

Если вы дочитали статью до конца, то, вероятно, вас интересует создание RAID-массива на домашнем компьютере или в офисе. У нашей команды большой опыт в системном администрировании и обслуживании компьютеров. Мы с лёгкостью окажем подобные услуги в Санкт-Петербурге как физическим, так и юридическим лицам.

Как создать RAID-массив

У любого пользователя ПК рано или поздно появляется целая коллекция накопителей, или особые требования, которые одним диском не решить. Например, увеличение скорости, надежности системы хранения, или просто удобства использования. И с этим может справиться RAID-массив. Так как нельзя объять необъятное, рассмотрим только те случаи, с которыми может столкнуться обычный пользователь Windows 10. Конечно же, в первую очередь, понадобится оборудование.

Что может понадобиться

Материнская плата. Преимущество в том, что она у вас уже есть, а вот недостатков хватает:

  1. При переводе материнской платы в режим RAID программы могут потерять доступ к показаниям SMART даже у дисков, не участвующих в массиве, что не всегда удобно
  2. Драйвера RAID для старых чипсетов могут не поддерживать TRIM, без которого у современных SSD снижается производительность и ресурс
  3. Может не быть поддержки нужного уровня массива (6, 5E, и т.д.)
  4. При смене прошивки может слететь настройка RAID (на самом деле настройки хранятся на самих накопителях, но при существенных изменениях прошивки это не поможет)
  5. При смене платформы также слетают настройки
  6. Потенциальные проблемы при создании в уже установленной OC

Если хотя бы один пункт вас не устраивает — вам, скорее всего, понадобится внешний контроллер, например:

Накопители. Желательно наличие поддержки RAID-контроллеров. Разница, по сравнению с обычными, заключается в поведении при нештатной ситуации. В случае возникновения ошибки обычный накопитель, в попытках решить проблему самостоятельно, может не успеть отчитаться перед контроллером, что закончится разрушением массива. Также стоит обратить внимание на наличие других оптимизаций для работы в RAID. Например, повышенную устойчивость к вибрации. Чем больше нагрузка и дисков тем больше эффект от таких оптимизаций.

Корзина не менее важна. Чем больше дисков и чем больше нагрузка на них, тем важнее виброизоляция.

Так выглядит достаточно хорошая корзина в потребительском корпусе — обратите внимание на голубые вставки виброгасящего материала:

Конечно, это далеко не предел возможностей корзины. В RAID-массивах диски работают практически синхронно, а если они одной модели, то имеют практически одинаковые резонансы, что при большой нагрузке в обычном корпусе может привести к поломке за считанные недели.

Охлаждение.Забывать про обдув накопителей тоже не стоит. Оптимальная температура 30–45 градусов. С такой задачей справится обычный тихий кулер, главное чтобы он был и работал.

Самые распространенные типы массивов

  • JBOD. Просто соединяет последовательно накопители в любом количестве, которое позволит контроллер, минимум один. Нет увеличения надежности, нет увеличения скорости. Зато можно соединять диски разного объема и скорости. Не рекомендуется для SSD из-за последовательного заполнения массива. Он будет либо полностью забит (из-за чего сильно теряет в ресурсе и скорости), либо свободен и фактически бездействовать.
  • RAID 0. Понадобится минимум 2 накопителя близкого объема и скорости, надежность при этом уменьшается, так как выход одного накопителя делает нечитаемым содержимое всего массива. Повышает скорость операций с крупными блоками, потерь объема не происходит. Для SSD имеет смысл только в рабочих задачах принедостатке скорости. При операциях на мелких блоках, характерных для игр илизагрузки ОС, из-за возникающих накладных расходов эффект будет отрицательный.
  • RAID 1. Понадобится два накопителя. Объем массива равен одному накопителю. Вопреки бытующим мнениям, защищает только от сбоя одного носителя. Режим незащищает от: шифровальщиков, повреждений данных на самом диске (в этом случае массив просто не в состоянии определить на каком диске верная информация, а на каком поврежденная). Хороший контроллер может увеличить скорость чтения с многопоточной нагрузкой, но от потребительских такого ждать не стоит.
  • RAID 5. Понадобится минимум три накопителя. Повышает скорость чтения, скорость записи (в зависимости от контроллера может сильно отличаться, но в любом случае меньше чем у RAID 0). Имеет критический недостаток, связанный с особенностями потребительских дисков — средняя вероятность одного сбойного бита на 12,5 Тбайт прочитанных данных. Столкнувшись с таким при восстановлении массив «рассыпется».
  • RAID 6. Требует наличия минимум четырех накопителей, при этом выдерживает отказ двух, что позволяет уменьшить риск отказа массива при восстановлении. Из-за особенностей алгоритмов коррекции ошибок заметно падает скорость записи. Это в свою очередь выливается в очень продолжительное восстановление при отказе без хорошего и дорогого контроллера.
  • RAID 10. По сути это RAID 0, построенный на базе двух и более RAID 1. Требует четного количества накопителей не менее 4 штук, половина из которых будет отдана на поддержание отказоустойчивости. В идеале может выдержать отказ половины накопителей, но в худшем варианте отказ второго накопителя приводит к потере всех данных. Быстрый при чтении и записи, восстановление происходит очень быстро, но большой расход пространства под резерв.

Проще всего сделать массив средствами ОС

Опционально можно убедиться, что в настройках прошивки SATA переведены в режим AHCI в зависимости от материнской платы это может дать возможность замены дисков прямо на работающем компьютере. Для этого надо найти соответствующие настройки в прошивке. Лучше всего ознакомиться с руководством или обзорами для вашей материнской платы. Конкретно на этой материнской плате AHCI активен всегда, даже в режиме RAID.

На старых чипсетах выбор чуть больше.

В случае если установлен режим IDE, переставлять сразу в AHCI не стоит, практически наверняка это вызовет BSOD. В любом случае этот пункт не обязателен. Даже если в системе есть SSD, режим IDE пропускает команду TRIM. Но если хочется, то можно запустить программу Sysprep перед сменой IDE на SATA в прошивке. Установленная галочка снесет активацию и не только на Windows.

Данная процедура предназначена для OEM-сборщиков, которые настраивают систему перед продажей. Также создается новый пользователь в системе, через которого и придется зайти. И потом просто удалить лишнего пользователя куда проще, чем ковыряться в реестре. Если не успеете зайти в прошивку до загрузки ОС, то придется повторить. Поэтому убедитесь, что у вас не включен Ultra Fast Boot.

После подготовительных процедур можно приступать к созданию массива. Для этого правой кнопкой по меню пуск вызывается управление дисками.

Новый диск потребуется инициализировать, после этого выберите соответствующий вашим запросам уровень массива:

После этого запустится мастер создания томов:

Для RAID 1 лучше не использовать максимальный объем. Купленный в будущем, диск на замену вышедшему из строя, может оказаться чуть-чуть меньше. Также можно сделать RAID 1 для операционной системы, но в случае GPT разметки и отказа загрузочного накопителя потребуется восстановление UEFI загрузчика.

Более сложный способ — средствами материнской платы

Придется прогуляться на сайт производителя чипсета и скачать все, что имеет в своем названии RAID.

И тут всплывает первый подводный камень. Инсталлятор драйверов RAID отказывается устанавливаться, при отсутствии активированного в прошивке RAID.

И на этом все. Потому что если ОС установлена на SATA, это приведет к невозможности загрузки без дополнительных манипуляций с прошивкой. При загрузочном NVMe можно активировать режим RAID для SATA, и спокойно поставить драйвера. В случае, если загрузочный накопитель и будущий RAID на базе SATA, можно поставить все три драйвера в ручном режиме. ВНИМАНИЕ! Это приведет к невозможности загрузки в обычном режиме.

Теперь, когда пути назад нет, обратите внимание на эти пункты (при других параметрах BIOS доступа к настройкам массивов не будет):

И только после сохранения и перезагрузки откроется доступ к настройкам:

По умолчанию из всех существующих накопителей создаются JBOD с 1 накопителем в массиве. Поэтому надо удалить массивы, в которых оказались накопители для RAID:

Спешка тут не нужна, потому что расстаться с важной информацией на этом этапе очень просто. Положение Enabled означает, что массив будет удален:

Теперь после того, как появились накопители не участвующие ни в одном массиве, на их базе создается новый:

В данном случае Volume соответствует JBOD, а RAIDABLE — диски, предназначенные под автоматическое восстановление массива:

Объем массива можно поменять с помощью цифровой клавиатуры.

Теперь, когда создание закончено, возвращаемся в Windows, и, через управление дисками, с массивом можно работать как с обычным диском. Обратите внимание — объем, полученный с помощью материнской платы, чуть меньше. Недостача ушла на нужды контроллера.

После инициализации в неразмеченной области можно создать обычный том. Мастер будет выглядеть практически так же, как и выше за пропуском нескольких пункт.

Если же предстоит установка Windows, содержимое архива с названием nvme_sata_raid_windows_driver надо закинуть на установочную флешку в распакованном виде. И в процессе установки указать — откуда их брать.

Установить надо все три драйвера в указанной последовательности.

После чего можно продолжить установку как обычно. И все это не зря, по сравнению с массивом, созданным на базе ОС:

Массив, созданный с помощью матплаты умеет кешировать данные хоть и не большого объема:

Комплектное ПО RAIDXpert2 по большей части дублирует возможности прошивки.

Оно позволяет производить все операции не покидая ОС. Конечно, это не исчерпывающее руководство к действию, но позволит обойти самые распространенные грабли.

RAID массив из старых жёстких дисков

Вступление

Всем привет, это Я. Ранее я уже писал на тему жёстких дисков. В той статье я описывал, как продляю жизнь посыпавшемуся жёсткому диску WD Green ёмкостью 2 Тб. Мой метод оказался настолько будоражащим сознание, что у некоторых сдетонировало и они всячески критиковали мои действия. Как оказалось, посторонних, неизвестных мне людей, сохранность моих данных беспокоит больше, чем меня самого. Поразительно! Сегодня будет не менее взрывоопасный контент, ведь мы будем делать RAID 0 из четырёх старых жёстких дисков в 2020 году. Погнали!

Так уж вышло, что в моей системной плате есть встроенный RAID-контроллер, который можно включить в BIOS. С годами у меня накопилось несколько килограмм жёстких дисков. Покоя они мне не давали и я всё думал, как же мне их пристроить, чтоб не лежали без дела. В основном это диски небольшого объёма: 20 Гб, 60 Гб, 80 Гб. В общем вы поняли. Однажды вспомнил я про RAID и решил: “А дай-ка сделаю RAID 0 из завалявшихся дисков”. Массив я создал вполне успешно и он работает должным образом, но прежде чем перейти к конечному варианту, покажу, какие диски будут участвовать в RAID.

Что такое RAID 0

Думаю, немного стоит написать про то, что такое RAID. RAID — массив из нескольких физических жёстких дисков, объединённых в один виртуальный носитель. Существует большое количество различных конфигураций RAID, каждый их которых обладает как плюсами, так и минусами. Чаще всего массив из нескольких дисков используется для обеспечения отказоустойчивости путём хранения избыточных данных. Большие массивы, состоящие из множества жёстких дисков, позволяют не допустить потери данных при выходе из строя сразу нескольких физических жёстких дисков.

Самый простой вариант RAID, не обеспечивающий отказоустойчивости, это RAID 0. Его плюсом является повышенная производительность по сравнению с другими реализациями RAID. По сути, всё что делает RAID 0, так это чередует записываемые в массив данные между всеми дисками массива. На входе данные разбиваются на равные блоки и записываются параллельно на все физические диски. Подобный принцип сильно повышает скорость последовательной записи и последовательного чтения. В теории скорость последовательного чтения/записи может быть равна сумме скоростей каждого диска. Хуже обстоит ситуация со случайной записью и случайным чтением мелких файлов. Впрочем, эти скорости также увеличиваются по сравнению с единичным диском, хоть и не так сильно, как в случае с последовательными операциями чтения/записи.

Основные цели, которые я преследовал при создании массива были: объединение ёмкостей дисков и максимальная производительность. Лучший выбор для этого — RAID 0.

Диски, используемые для RAID 0

Как я написал в введении, наш RAID будет состоять из четырёх дисков. Первый диск — Seagate Barracuda 80 Гб с интерфейсом IDE — самый слабенький:

Тем не менее, состояние его вполне нормальное. Сбойных секторов или прочих ошибок нет. На скриншоте ниже SMART и быстродействие этого диска в программе CrystalDiskMark:

Поскольку на моей системной плате нет разъёмов IDE, то подключить этот диск напрямую я не мог. Для этого пришлось использовать плату-контроллер. Так она выглядит:

Не подумайте, что контроллер я купил специально, дабы подключить старый диск. Делать мне нечего. Случайно я вспомнил, что он у меня валяется без дела и решил задействовать. Контроллер этот двусторонний. То есть, с его помощью можно подключить старый IDE диск к современной системной плате, но также можно подключить новый SATA диск к старой плате, у которой нет SATA контроллера. На фотографии ниже показываю, как диск подключается к плате. В разъём IDE вставляется плата-контроллер, а уже к ней подключается SATA шлейф и питание самого контроллера. Питание диска подключается как обычно:

Конечно же первый вопрос, который возникает, при работе с подобными контроллерами: “Насколько он ухудшает скорость работы диска?” Мне тоже хотелось это проверить и я подключил диск к старой плате, имеющей разъём IDE. Ниже скриншот быстродействия, но диск уже подключен напрямую IDE to IDE:

Как видно на сравнительном скриншоте, разницы в производительности почти нет. Она настолько незначительная, что можно сказать в пределах погрешности измерений. Так что хорошая новость, подобный контроллер практически никак не ограничивает быстродействие жёсткого диска. С этим разобрались, переходим к следующему диску.

Следующий диск тоже Seagate Barracuda 80 Гб, но уже с интерфейсом SATA, более современный:

Диск этот хоть и SATA, но тоже далеко не первой свежести. И тем не менее со SMART всё в порядке. Его вы видите на скриншоте ниже вместе с тестом производительности:

Третий диск, используемый мною для создания массива — Maxtor 80 Gb SATA:

SMART и тест быстродействия этого диска:

Четвёртого диска на 80 Гб у меня не было. Но для создания RAID массива совершенно не обязательно использовать диски одинакового объёма. Посему четвёртым диском был выбран Seagate Barracuda 160 Gb SATA:

SMART этого диска показывает 1 сбойный сектор. Появился он уже давно и новых не добавляется, так что всё в порядке. Хотя наработка внушительная — 47 тысяч 300 часов:

В завершение вступительной части покажу, как все эти 4 диска разместились в корпусе компьютера. Прямо перед ними расположен 120 мм вентилятор, продувающий всю “корзину” (между дисками есть расстояние). С охлаждением проблем нет:

Все четыре диска подключены к компьютеру, переходим к созданию RAID:

Создание RAID 0

Первым делом я переключил в BIOS режим работы SATA контроллера с AHCI на RAID. Выяснилось, что настройки встроенного в плату контроллера не такие уж богатые. В настройках можно выбрать размер блока Stripe Block, политику чтения Read Policy и политику записи Write Policy. И всё. Больше менять ничего нельзя. Впрочем, для моих целей и этих настроек вполне достаточно.

Конечно же все имеющиеся настройки могут влиять на скорость работы будущего RAID. Возник вопрос, какая комбинация настроек обеспечит максимальное быстродействие? К счастью настроек не так уж и много, я проверил их все. Начал с того, что выставил Stripe Block 64 КБ. Политику записи — Write Thru. При таком выборе, единственный доступный вариант политики чтения это NA. Я не буду вдаваться в описание значений всех этих параметров, всё это описано задолго до меня и при желании вы можете найти всё в интернете. Единственное, стоит отметить, что политика записи Write Thru по логике должна быть медленнее других. Поскольку при включении данной политики не используется кэш записи.

Производительность RAID 0 в этом режиме представлена на следующем скриншоте:

После, не меняя размер Stripe Block, я установил Read Policy как Read Cache, а Write Policy как Write Back. Эти параметры задействуют кэш, в теории увеличивая производительность. Минус политики Write Back в том, что при внезапном отключении электричества, с данными, которые не были записаны из кэша на носитель, произойдут алаверды. Они пропадут.

Производительность RAID 0 в режиме с описанными выше параметрами:

По результатам тестов получается, что разница в производительности между протестированными вариантами не такая уж большая. При смене политики на Write Back ощутимо увеличилась лишь случайная запись блоками по 4 КБ. Последовательное чтение, ровно как и случайное, в скорости не прибавило.

Следующая комбинация настроек для тестирования: Stripe Block 64 KB, политики Read Ahead, Write Back. Результаты на скриншоте:

Результаты не слишком отличаются от предыдущих. Для наглядности объединим их в один скриншот:

Думал я, думал, да и решил, что остановлюсь на варианте Read Policy: Read Ahead, Write Policy: Write Back. Осталось только определиться с размером блока Stripe Block. В настройках контроллера этот параметр можно устанавливать в следующих вариациях: 64 KB, 128 KB, 256 KB. В теории, меньший размер блока позволяет добиться большей производительности при работе с мелкими файлами. Больший размер, наоборот, должен повышать быстродействие при записи и чтении файлов большого объёма. Теория есть теория, но почему бы не проверить на практике? Хоть я изначально и склонялся к варианту в 256 KB, так как использовать RAID планировалось для больших файлов, всё же протестировал все три варианта.

Все дальнейшие тесты будут проводиться с включеными политиками Read Ahead и Write Back. Результаты с размером Stripe Block 64 KB нам уже известны. Тестируем Stripe Block 128 KB:

Разница не особа заметна. Случайная запись по 4 КБ немного снизилась, но вместе с тем немного увеличилась при глубине запросов равной 32. Немного возрасло последовательное чтение. Проверим, что получится, если выбрать Stripe Block 256 KB:

Получается, что относительно Stripe Block 128 KB, незначительно увеличилась скорость последовательного чтения. Случайное чтение по 512 КБ немного уменьшилось, зато возрасла скорость случайной записи по 512 КБ и очень сильно, аж на целых 10 МБ/с. Было 49 МБ/с, стало 59 МБ/с. Это уже что-то. Случайная запись по 4 КБ также заметно увеличилась. В остальном разница минимальна. Объединим результаты в один скриншот:

Мне больше всего понравились результаты с Stripe Block 256 KB. Но я решил убедиться и провести ещё два теста, выставив максимальные настройки в CrystalDiskMark: количество повторений 9, объём теста 4000 MB. Результаты Stripe Block 64 KB:

Тот же самый тест с Stripe Block 256 KB:

Проверять Stripe Block 128 KB я не стал, поскольку выбирал между 64 KB и 256 KB. Объединим результаты:

Полученные результаты окончательно сбили с толку. Где-то лучше Stripe Block 64 KB, где-то лучше 256 KB. Значительная разница в результатах наблюдается в случайной записи по 512 КБ. 34 МБ/с при Stripe Block 64 KB и целых 59 МБ/с при 256 KB. В конечном итоге я остановился на размере Stripe Block равным 256 KB. Ведь, как я уже писал, планируется работать с файлами большого объёма.

Так выглядит финальная версия RAID в настройках контроллера:

Общий объём массива в операционной системе — 294 ГБ. На этом скриншоте я уже успел наполнить RAID файлами:

Сравнение RAID 0, Single HDD, SSD

Под конец самое интересное. Сравним быстродействие получившегося RAID 0 с единичным жёстким диском, который у меня используется как основной и с твердотельным накопителем (SSD), на котором установлена операционная система.

Чувствуете запахло горелым? Это начинает подгорать у тех, кто слишком остро реагирует на скриншоты с плохим SMART. Вот, любуйтесь, это мой основной диск Hitachi на 2 ТБ для хранения данных, в программе Hard Disk Sentinel. Готовы? 3… 2… 1… Ignition:

Скриншот с вкладкой SMART в той же программе:

Да, этот диск во всю сыпется. У него была не лёгкая жизнь. Это внешний жёсткий диск, который использовался мной портативно на протяжение нескольких лет. Время наработки у него на тот момент, когда он посыпался, было менее тысячи часов. Сгубило диск то, что я его постоянно возил туда-суда. Но когда он посыпался, я его разобрал, извлёк из корпуса сам диск и по известной методике продлил ему срок службы.

Так этот диск выглядел, пока я его не разобрал:

Непосредственно жёсткий диск, извлечённый из корпуса:

Структура разделов на диске такова: 456 ГБ в начале диска не распределено, именно там находятся заросли бэдов и нестабильных секторов с низкой скоростью доступа. Остальная поверхность в отличном состоянии, там и расположился единственный раздел:

В самом начале отрезано немало пространства. Так я изолировал кучно лежащие бэды и нестабильные сектора. Конечно это существенно сказывается на производительности диска, ведь чем ближе к концу физического пространства, тем ниже скорость чтения/записи. Но это так, к слову.

Что ж, давайте сравним быстродействие RAID 0 из старых жёстких дисков с единичным диском, который уже давно сыпется и с вполне неплохим SSD на MLC чипах. Результаты на скриншоте. Слева RAID 0, по середине HDD Hitachi 2 TB и справа SSD Plextor 128 Gb:

По скорости лидирует SSD с большим отрывом. Было бы странно, будь оно иначе. Но посмотрите на RAID 0 в сравнении с единичным жёстким диском. Тут уже иная картина. RAID 0 показывает куда большие скорости и это при том, что состоит он из старых, можно даже сказать древних дисков, один из которых к тому же имеет интерфейс IDE.

К сожалению не всё так радужно, как хотелось бы. Скорость чтения/записи у жёсткого диска снижается по мере приближения к концу физического пространства. Не лишён этого недостатка и массив из нескольких дисков. На данный момент массив заполнен на 96%. Я решил прогнать тест ещё раз. При такой заполненности результаты совсем печальные:

Поскольку массив заполнен почти до отказа, тест выполнялся в конце физического пространства каждого диска (кроме диска на 160 Гб). Это не могло не сказаться на скорости чтения/записи. В таких условиях скорость RAID 0 уже не так разительно отличается от скорости единичного жёсткого диска.

Итоги

Прежде чем подводить итоги, я хочу дать вам послушать запуск четырёх старых дисков одновременно. Это прикольно звучит. Посмотрите небольшое видео, в нём вы также сможете услышать, как стрекочут все четыре диска при случайном чтении/записи:

Я не хочу перечислять минусы подобного RAID массива из старых дисков, они слишком очевидны. А вот немного о плюсах можно сказать. Во-первых, ощутимо повышается производительность, если конечно не забивать массив под завязку. Скорости старых жёстких объёмом 80 Гб крайне низкие по современным меркам. Создание RAID 0 позволяет дотянуть производительность до уровня современных жёстких дисков. Во-вторых, если использовать диски одинакового размера, то их ёмкости суммируются, это тоже плюс. Иметь в операционной системе четыре отдельных логических диска маленького размера неудобно. Объединив 4 диска на 80 Гб в RAID 0, получаем почти 300 ГБ сплошного дискового пространства. В-третьих, подобная манипуляция позволяет дать старым, забытым “жестянкам” новую жизнь.

Заметна ли разница в производительности невооружённым взглядом, без тестов? Да, заметна. Первое, на что я обратил внимание, что файлы быстрее копируются как в массив, так и из него. Также была замечена существенно возросшая производительности при работе в виртуальной машине. Разместив виртуальный жёсткий диск на RAID 0, я ощутил, как виртуалка “задышала”. Загрузка гостевой операционной системы стала быстрее да и вообще отзывчивость виртуальной машины в целом улучшилась.

Предвосхищая будущие комментарии, не могу не сказать об опасности хранения важных данных на подобных массивах. Но ведь это же очевидно, не так ли? Вероятность того, что в любой момент что-нибудь пойдёт не так, слишком высока. RAID 0 сам по себе мягко говоря не блещет отказоустойчивостью. А если создавать его из старых дисков с огромной наработкой, то высоки шансы, что весь массив внезапно накроется медным тазом. Я использовал этот массив для того, чтобы рендерить на него видео. Даже если массив отвалится, то ничего страшного не произойдёт. Всё, что я потеряю, это отрендеренный файл, который можно рендерить снова. Но ничего подобного не произошло. Не скажу, что я долго пользовался этим массивом, но за всё время его работы не было замечено ни единого сбоя. Всё работало как часы.

http://www.weba.ru/blog/raid-massivy/
http://club.dns-shop.ru/blog/t-107-jestkie-diski/28696-kak-sozdat-raid-massiv/
http://sandyfoto.ru/raid_massiv_iz_starykh_zhostkikh_diskov.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *