Где хранить данные? На каких накопителях хранить файлы длительное время?

Где хранить данные? На каких накопителях хранить файлы длительное время?

Каждый человек имеет хотя бы чуточку информации или данных, которые ему очень дороги. Эта информация не всегда может иметь именно материальную ценность, вспомнить те же видео, детские фото или фотографии со свадьбы – все это очень дорого. Но многие не догадываются что диск, на котором это все записано, всего за одно десятилетие может прийти в негодность и с него уже ничего не получится прочитать. Если хотите сохранить такую важную информацию как можно дольше, то эта статья для вас.

Мы поделимся опытом в работе с разными накопителями и расскажем, какие из них надежные, а на каких лучше не хранить ничего ценного. Вы узнаете, как сохранить данные в целости и сохранности, хотя бы на столетие.

Общие правила хранения ценной информации

Есть несколько правил, работающие в отношении любой информации, которую важно сохранить в целости и сохранности. Если не хотите потерять дорогие сердцу фотографии, важные документы или ценные работы, то:

  • Создайте как можно больше копий. Таким образом вы подстрахуете себя несколькими запасными копиями и в случае потери одной копии у вас еще останется парочка других экземпляров.
  • Храните данные только в самых распространенных и общепринятых форматах. Не стоит прибегать к экзотике и применять малоизвестные типы файлов, ведь в один прекрасный день, просто не сможете найти программу для его открытия (к примеру тексты лучше хранить в ODF или TXT, а не DOCX и DOC).
  • Сделав несколько копий, разместите их на разных носителях, не стоит хранить все на одном и том же жестком диске.
  • Не используйте сжатие или шифрование данных. Если такой файл даже немного повредится, уже никогда не выйдет получить к нему доступ и открыть содержимое. Для длительного хранения медиа файлов применяйте несжатые форматы. Для аудио это WAV, для изображений подходят RAW, TIFF и BMP, видео файлы – DV. Правда тут понадобится носитель достаточно большой емкости, чтобы вместить такие файлы.
  • Постоянно проверяйте целостность своей информации и создавайте дополнительные копии новыми способами и на более новых устройствах.

Такие простые правила помогут вам на долгие годы сберечь важные документы, дорогие фото и видео записи. А сейчас рассмотрим где дольше всего информация будет в целости и сохранности.

Про популярные носители и их надежность

К самым распространенным и популярным способам хранения цифровой информации относится – использование жестких дисков, Flash-носители (SSD диски, флешки и карты памяти), запись оптических дисков (CD, DVD и диски Blu-Ray). Дополнительно, существует масса облачных хранилищ для любых данных (Dropbox, Яндекс Диск, Google Drive и многие другие).

Как вы думаете, что из всего перечисленного является лучшим местом хранения важной информации? Давайте изучим каждый из этих способов.

  1. Жесткие диски – на сегодняшний день используются в большинстве настольных ПК, а также нашли применение в качестве портативных хранилищ данных. Обычно, такой носитель исправно работает в течении 3-10 лет и срок его службы зависит от множества внешних факторов и самого качества изготовления.
    Если регулярно не использовать такой диск, а лишь единожды записать на него все, что нужно и спрятать в укромный уголок какой-нибудь тумбочки, то информация аналогично будет храниться на нем в течении такого же срока. Такие диски очень плохо переносят любые внешние воздействия, их нельзя бить, встряхивать и подвергать воздействию сильных магнитных полей – все это может привести к неприятным последствиям.
  2. Флешки и SSD накопители – такие устройства, в среднем, исправно работают около пяти лет. Многие флешки могут ломаться даже намного раньше, ведь они могут не перенести скачок напряжения или статический разряд, в момент подключения к ПК.
    Если записать ценную информацию и не пользоваться носителем, то данные могут сохраняться приблизительно 7-8 лет.
  3. Оптические диски – это всем известные CD, DVD и Blu-Ray. Пожалуй, это одни, из самых долговременных способов сохранить информацию, в некоторых случаях такой диск будет надежно хранить все записанные данные более чем 100 лет. Но здесь важно учитывать множество разных моментов и далеко не все диски смогут похвастаться таким долгожительством.
    Поэтому далее им будет посвящен целый раздел в этой статье, где мы все подробно рассмотрим.
  4. Облачные сервисы – сложно говорить, насколько высока надежность таких хранилищ. Вполне возможно, в таких местах данные будут храниться до тех пор, пока это будет выгодно в коммерческом плане. Если вы прочитаете лицензионное соглашение (которое предоставляется при регистрации), то можете обратить внимание на тот момент, что подобные компании не будут нести никакой ответственности за потерю ваших данных.
    Смущает и то, что можно потерять контроль над своим хранилищем из-за мошенников и злоумышленников, которые получат к нему доступ.

Как вы поняли, среди самых доступных способов, лучше всего хранить свои данные именно на оптических дисках. Но не все из них способны справиться с течением безжалостного времени и дальше вы узнаете, какие лучше подходят для наших целей. Кроме того, хорошим решением будет использование сразу нескольких, упомянутых способов, одновременно.

Используем оптические диски правильно!

Возможно, некоторые из вас наслышаны о том, как долго можно сохранить информацию на оптических дисках типа CD или DVD. Некоторые, наверное, даже записали определенные данные на них, но через время (несколько лет) не удалось прочесть диски.

На самом деле тут нет ничего удивительного, срок хранения информации на подобных носителях тоже зависит от многих факторов. В первую очередь, важную роль играет качества самого диска и его тип. Кроме этого следует и придерживаться определенных условий хранения и процесса записи.

  • Не используйте для долговременного хранения перезаписываемые виды дисков (CD-RW, DVD-RW), они не созданы для этих целей.
  • Тестирование показало, что статистически наиболее длительный срок хранения информации именно у CD-R дисков и он превышает 15 лет. Только половина всех проверенных DVD-R показала подобные результаты. Что касается Blu-ray, то тут точную статистику найти не удалось.
  • Не стоит гнаться за дешевизной и покупать болванки которые продаются за копейки. Они имеют очень низкое качество и не подойдут для важной информации.
  • Записывайте диски на минимальной скорости и делайте все в одну сессию записи.
  • Диски должны хранится в защищенном от прямых солнечных лучей месте, со стабильной, комнатной температурой и умеренной влажностью. Не подвергайте их никаким механическим воздействиям.
  • В отдельных случаях, на саму запись влияет и качество привода, который «нарезает» болванки.

Какой стоит выбрать диск для хранения данных?

Как вы уже поняли, диски бывают разные. Все главные отличия связанны с отражающей поверхностью, типом поликарбонатной основы и качеством в целом. Даже есть брать продукцию одной и той же фирмы, но изготовленную в разных странах, то даже тут качество может различаться на порядок.

В качестве поверхности, на которую производится запись используют цианиновый, фталоцианиновый или металлизированные слои. Отражающая поверхность создается золотым, серебряным или из сплавов серебра покрытием. Наиболее качественные и долговечные диски изготавливаются именно из фталоцианина с золотым напылением (т. к. золото не подвержено окислению). Но есть диски и с другими комбинациями этих материалов, которые также могут похвастаться хорошей долговечностью.

К большому огорчению привела попытка отыскать специальные диски для хранения данных, у нас их практически не реально встретить. При желании, такие оптические носители можно заказать через интернет (далеко не всегда дешево). Среди лидеров, которые могут сохранить вашу информацию как минимум на столетие можно выделить DVD-R и CD-R Mitsui (этот производитель вообще гарантирует до 300 лет хранения), MAM-A Gold Archival, JVC Taiyu Yuden и Varbatium UltraLife Gold Archival.

К числу самых идеальных вариантов, для хранения цифровой информации можно добавить и Delkin Archival Gold, которые вообще нигде не встретились на территории нашей страны. Но как уже было сказано, все перечисленное можно без особого труда заказать в интернет-магазинах.

Из доступных дисков, которые можно у нас встретить, самым качественными и способными обеспечить сохранность информации как минимум на десятилетие будут:

  • Verbatium, Индийского, Сингапурского, ОАЭ или Тайваньского изготовления.
  • Sony, которые создаются в том же Тайване.

Но тот факт, что эти все диски умеют долго хранить информацию еще не гарантирует, что она на долго сохранится. Поэтому не забывайте придерживаться тех правил, которые мы выделили еще в самом начале.

Взгляните на следующий график, на нем обозначена зависимость появления ошибок считывания данных, от времени нахождения оптического диска в агрессивной среде. Понятное дело, что график создан именно для маркетингового продвижения товара, но все же обратите внимание, что на нем есть очень любопытная Millenniata, на дисках которой вообще не появляются ошибки. Сейчас мы о ней узнаем больше.

Millenniata M-Disk

Среди продукции этой компании есть диски серии M-Disk DVD-R и M-Disk Blu-Ray способные хранить важные данные сроком до 1000 лет. Такая потрясающая надежность достигается использованием в основе дисков неорганического стеклоуглерода, который в отличии от остальных дисков, где используются органические материалы, не подвержен окислению, разложению под действием света и тепла. Такие диски легко будут переносить попадание кислот, щелочей и растворителей, а также могут похвастаться более высокой стойкостью к механическим воздействиям.

Во время записи, на поверхности, в прямом смысле слово прожигаются небольшие окошки (на обычных дисках происходит пигментация пленки). Основа диска аналогично рассчитана на более серьезные испытания и способна сохранять свою структуру даже под воздействием высоких температур.

У нас не удалось найти такие диски в продаже, но в сети их можно свободно заказать по вполне доступной цене. Оптические диски этой серии прекрасно читаются любыми современными приводами. Вполне возможно, со временем они и у нас начнут появляться в свободной продаже.

Несмотря на то, что подобные носители могут быть прочитаны любым приводом для того, чтобы записать DVD-R нужен особый привод, который сертифицирован и имеет эмблему M-Disk. Это связанно с необходимостью использования более мощного лазера. Чтобы записывать такие Blu-Ray диски, можно использовать любые приводы, способные выполнять запись подобных типов оптических носителей.

Как вы поняли, необходимость использования специального привода (который тоже у нас редкость), является серьезным минусом. Но с другой стороны, иногда ценные фото, видео и другая информация намного более важны и для этих вещей можно раздобыть и привод.

В любом случае, при хранении важной информации придерживайтесь упомянутых правил и тогда вы сможете надолго сохранить воспоминания о каком-либо событии, и сберечь архив важных документов.

Типы файловых систем, их предназначение и отличия

Рядовому пользователю компьютерных электронных устройств редко, но приходится сталкиваться с таким понятием, как «выбор файловой системы». Чаще всего это происходит при необходимости форматирования внешних накопителей (флешек, microSD), установке операционных систем, восстановлении данных на проблемных носителях, в том числе жестких дисках. Пользователям Windows предлагается выбрать тип файловой системы, FAT32 или NTFS, и способ форматирования (быстрое/глубокое). Дополнительно можно установить размер кластера. При использовании ОС Linux и macOS названия файловых систем могут отличаться.

Возникает логичный вопрос: что такое файловая система и в чем ее предназначение? В данной статье дадим ответы на основные вопросы касательно наиболее распространенных ФС.

Что такое файловая система

Обычно вся информация записывается, хранится и обрабатывается на различных цифровых носителях в виде файлов. Далее, в зависимости от типа файла, кодируется в виде знакомых расширений – *exe, *doc, *pdf и т.д., происходит их открытие и обработка в соответствующем программном обеспечении. Мало кто задумывается, каким образом происходит хранение и обработка цифрового массива в целом на соответствующем носителе.

Операционная система воспринимает физический диск хранения информации как набор кластеров размером 512 байт и больше. Драйверы файловой системы организуют кластеры в файлы и каталоги, которые также являются файлами, содержащими список других файлов в этом каталоге. Эти же драйверы отслеживают, какие из кластеров в настоящее время используются, какие свободны, какие помечены как неисправные.

Запись файлов большого объема приводит к необходимости фрагментации, когда файлы не сохраняются как целые единицы, а делятся на фрагменты. Каждый фрагмент записывается в отдельные кластеры, состоящие из ячеек (размер ячейки составляет один байт). Информация о всех фрагментах, как части одного файла, хранится в файловой системе.

Файловая система связывает носитель информации (хранилище) с прикладным программным обеспечением, организуя доступ к конкретным файлам при помощи функционала взаимодействия программ A PI. Программа, при обращении к файлу, располагает данными только о его имени, размере и атрибутах. Всю остальную информацию, касающуюся типа носителя, на котором записан файл, и структуры хранения данных, она получает от драйвера файловой системы.

На физическом уровне драйверы ФС оптимизируют запись и считывание отдельных частей файлов для ускоренной обработки запросов, фрагментации и «склеивания» хранящейся в ячейках информации. Данный алгоритм получил распространение в большинстве популярных файловых систем на концептуальном уровне в виде иерархической структуры представления метаданных (B-trees). Технология снижает количество самых длительных дисковых операций – позиционирования головок при чтении произвольных блоков. Это позволяет не только ускорить обработку запросов, но и продлить срок службы HDD. В случае с твердотельными накопителями, где принцип записи, хранения и считывания информации отличается от применяемого в жестких дисках, ситуация с выбором оптимальной файловой системы имеет свои нюансы.

Основные функции файловых систем

Файловая система отвечает за оптимальное логическое распределение информационных данных на конкретном физическом носителе. Драйвер ФС организует взаимодействие между хранилищем, операционной системой и прикладным программным обеспечением. Правильный выбор файловой системы для конкретных пользовательских задач влияет на скорость обработки данных, принципы распределения и другие функциональные возможности, необходимые для стабильной работы любых компьютерных систем. Иными словами, это совокупность условий и правил, определяющих способ организации файлов на носителях информации.

Основными функциями файловой системы являются:

  • размещение и упорядочивание на носителе данных в виде файлов;
  • определение максимально поддерживаемого объема данных на носителе информации;
  • создание, чтение и удаление файлов;
  • назначение и изменение атрибутов файлов (размер, время создания и изменения, владелец и создатель файла, доступен только для чтения, скрытый файл, временный файл, архивный, исполняемый, максимальная длина имени файла и т.п.);
  • определение структуры файла;
  • поиск файлов;
  • организация каталогов для логической организации файлов;
  • защита файлов при системном сбое;
  • защита файлов от несанкционированного доступа и изменения их содержимого.

Задачи файловой системы

Функционал файловой системы нацелен на решение следующих задач:

  • присвоение имен файлам;
  • программный интерфейс работы с файлами для приложений;
  • отображение логической модели файловой системы на физическую организацию хранилища данных;
  • поддержка устойчивости файловой системы к сбоям питания, ошибкам аппаратных и программных средств;
  • содержание параметров файла, необходимых для правильного взаимодействия с другими объектами системы (ядро, приложения и пр.).

В многопользовательских системах реализуется задача защиты файлов от несанкционированного доступа, обеспечение совместной работы. При открытии файла одним из пользователей для других этот же файл временно будет доступен в режиме «только чтение».

Вся информация о файлах хранится в особых областях раздела (томах). Структура справочников зависит от типа файловой системы. Справочник файлов позволяет ассоциировать числовые идентификаторы уникальных файлов и дополнительную информацию о них с непосредственным содержимым файла, хранящимся в другой области раздела.

Операционные системы и типы файловых систем

Существует три основных вида операционных систем, используемых для управления любыми информационными устройствами: Windows компании Microsoft, macOS разработки Apple и операционные системы с открытым исходным кодом на базе Linux. Все они, для взаимодействия с физическими носителями, используют различные типы файловых систем, многие из которых дружат только со «своей» операционкой. В большинстве случаев они являются предустановленными, рядовые пользователи редко создают новые дисковые разделы и еще реже задумываются об их настройках.

В случае с Windows все выглядит достаточно просто: NTFS на всех дисковых разделах и FAT32 (или NTFS) на флешках. Если установлен NAS (сервер для хранения данных на файловом уровне), и в нем используется какая-то другая файловая система, то практически никто не обращает на это внимания. К нему просто подключаются по сети и качают файлы.

На мобильных гаджетах с ОС Android чаще всего установлена ФС версии ext4 во внутренней памяти и FAT32 на карточках microSD. Владельцы продукции Apple зачастую вообще не имеют представления, какая файловая система используется на их устройствах – HFS+, HFSX, APFS, WTFS или другая. Для них существуют лишь красивые значки папок и файлов в графическом интерфейсе.

Более богатый выбор у линуксоидов. Но здесь настройка и использование определенного типа файловой системы требует хотя бы минимальных навыков программирования. Тем более, мало кто задумывается, можно ли использовать в определенной ОС «неродную» файловую систему. И зачем вообще это нужно.

Рассмотрим более подробно виды файловых систем в зависимости от их предпочтительного использования с определенной операционной системой.

Файловые системы Windows

Исходный код файловой системы, получившей название FAT, был разработан по личной договоренности владельца Microsoft Билла Гейтса с первым наемным сотрудником компании Марком Макдональдом в 1977 году. Основной задачей FAT была работа с данными в операционной системе Microsoft 8080/Z80 на базе платформы MDOS/MIDAS. Файловая система FAT претерпела несколько модификаций – FAT12, FAT16 и, наконец, FAT32, которая используется сейчас в большинстве внешних накопителей. Основным отличием каждой версии является преодоление ограниченного объема доступной для хранения информации. В дальнейшем были разработаны еще две более совершенные системы обработки и хранения данных – NTFS и ReFS.

FAT (таблица распределения файлов)

Числа в FAT12, FAT16 и FAT32 обозначают количество бит, используемых для перечисления блока файловой системы. FAT32 является фактическим стандартом и устанавливается на большинстве видов сменных носителей по умолчанию. Одной из особенностей этой версии ФС является возможность применения не только на современных моделях компьютеров, но и в устаревших устройствах и консолях, снабженных разъемом USB.

Пространство FAT32 логически разделено на три сопредельные области:

  • зарезервированный сектор для служебных структур;
  • табличная форма указателей;
  • непосредственная зона записи содержимого файлов.

К недостатком стандарта FAT32 относится ограничение размера файлов на диске до 4 Гб и всего раздела в пределах 8 Тб. По этой причине данная файловая система чаще всего используется в USB-накопителях и других внешних носителях информации. Для установки последней версии ОС Microsoft Windows 10 на внутреннем носителе потребуется более продвинутая файловая система.

С целью устранения ограничений, присущих FAT32, корпорация Microsoft разработала обновленную версию файловой системы exFAT (расширенная таблица размещения файлов). Новая ФС очень схожа со своим предшественником, но позволяет пользователям хранить файлы намного большего размера, чем четыре гигабайта. В exFAT значительно снижено число перезаписей секторов, ответственных за непосредственное хранение информации. Функция очень важна для твердотельных накопителей ввиду необратимого изнашивания ячеек после определенного количества операций записи. Продукт exFAT совместим с операционными системами Mac, Android и Windows. Для Linux понадобится вспомогательное программное обеспечение.

NTFS (файловая система новой технологии)

Стандарт NTFS разработан с целью устранения недостатков, присущих более ранним версиям ФС. Впервые он был реализован в Windows NT в 1995 году, и в настоящее время является основной файловой системой для Windows. Система NTFS расширила допустимый предел размера файлов до шестнадцати гигабайт, поддерживает разделы диска до 16 Эб (эксабайт, 10 18 байт ). Использование системы шифрования Encryption File System (метод «прозрачного шифрования») осуществляет разграничение доступа к данным для различных пользователей, предотвращает несанкционированный доступ к содержимому файла. Файловая система позволяет использовать расширенные имена файлов, включая поддержку многоязычности в стандарте юникода UTF, в том числе в формате кириллицы. Встроенное приложение проверки жесткого диска или внешнего накопителя на ошибки файловой системы chkdsk повышает надежность работы харда, но отрицательно влияет на производительность.

ReFS (Resilient File System)

Последняя разработка Microsoft, доступная для серверов Windows 8 и 10. Архитектура файловой системы в основном организована в виде B + -tree. Файловая система ReFS обладает высокой отказоустойчивостью благодаря реализации новых функций:

  • Copy-on-Write (CoW) – никакие метаданные не изменяются без копирования;
  • данные записываются на новое дисковое пространство, а не поверх существующих файлов;
  • при модификации метаданных новая копия хранится в свободном дисковом пространстве, затем система создает ссылку из старых метаданных на новую версию.

Все это позволяет повысить надежность хранения файлов, обеспечивает быстрое и легкое восстановление данных.

Файловые системы macOS

Для операционной системы macOS компания Apple использует собственные разработки файловых систем:

  1. HFS+, которая является усовершенствованной версией HFS, ранее применяемой на компьютерах Macintosh, и ее более соверешенный аналог APFS. Стандарт HFS+ используется во всех устройствах под управлением продуктов Apple, включая компьютеры Mac, iPod, а также Apple X Server.
  2. Кластерная файловая система Apple Xsan, созданная из файловых систем StorNext и CentraVision, используется в расширенных серверных продуктах. Эта файловая система хранит файлы и папки, информацию Finder о просмотре каталогов, положениях окна и т.д.

Файловые системы Linux

В отличие от ОС Windows и macOS, ограничивающих выбор файловой системы предустановленными вариантами, Linux предоставляет возможность использования нескольких ФС, каждая из которых оптимизирована для решения определенных задач. Файловые системы в Linux используются не только для работы с файлами на диске, но и для хранения данных в оперативной памяти или доступа к конфигурации ядра во время работы системы. Все они включены в ядро и могут использоваться в качестве корневой файловой системы.

Основные файловые системы, используемые в дистрибутивах Linux:

  • Ext2;
  • Ext3;
  • Ext4;
  • JFS;
  • ReiserFS;
  • XFS;
  • Btrfs;
  • ZFS.

Ext2, Ext3, Ext4 или Extended Filesystem – стандартная файловая система, первоначально разработанная еще для Minix. Содержит максимальное количество функций и является наиболее стабильной в связи с редкими изменениями кодовой базы. Начиная с ext3 в системе используется функция журналирования. Сегодня версия ext4 присутствует во всех дистрибутивах Linux.

JFS или Journaled File System разработана в IBM в качестве альтернативы для файловых систем ext. Сейчас она используется там, где необходима высокая стабильность и минимальное потребление ресурсов (в первую очередь в многопроцессорных компьютерах). В журнале хранятся только метаданные, что позволяет восстанавливать старые версии файлов после сбоев.

ReiserFS также разработана в качестве альтернативы ext3, поддерживает только Linux. Динамический размер блока позволяет упаковывать несколько небольших файлов в один блок, что предотвращает фрагментацию и улучшает работу с небольшими файлами. Недостатком является риск потери данных при отключении энергии.

XFS рассчитана на файлы большого размера, поддерживает диски до 2 терабайт. Преимуществом системы является высокая скорость работы с большими файлами, отложенное выделение места, увеличение разделов на лету, незначительный размер служебной информации. К недостаткам относится невозможность уменьшения размера, сложность восстановления данных и риск потери файлов при аварийном отключении питания.

Btrfs или B-Tree File System легко администрируется, обладает высокой отказоустойчивостью и производительностью. Используется как файловая система по умолчанию в OpenSUSE и SUSE Linux.

Другие ФС, такие как NTFS, FAT, HFS, могут использоваться в Linux, но корневая файловая система на них не устанавливается, поскольку они для этого не предназначены.

Дополнительные файловые системы

В операционных системах семейства Unix BSD (созданы на базе Linux) и Sun Solaris чаще всего используются различные версии ФС UFS (Unix File System), известной также под названием FFS (Fast File System). В современных компьютерных технологиях данные файловые системы могут быть заменены на альтернативные: ZFS для Solaris, JFS и ее производные для Unix.

Кластерные файловые системы включают поддержку распределенных хранилищ, расширяемость и модульность. К ним относятся:

  • ZFS – «Zettabyte File System» разработана для распределенных хранилищ Sun Solaris OS;
  • Apple Xsan – эволюция компании Apple в CentraVision и более поздних разработках StorNext;
  • VMFS (Файловая система виртуальных машин) разработана компанией VMware для VMware ESX Server;
  • GFS – Red Hat Linux именуется как «глобальная файловая система» для Linux;
  • JFS1 – оригинальный (устаревший) дизайн файловой системы IBM JFS, используемой в старых системах хранения AIX.

Практический пример использования файловых систем

Владельцы мобильных гаджетов для хранения большого объема информации используют дополнительные твердотельные накопители microSD (HC), по умолчанию отформатированные в стандарте FAT32. Это является основным препятствием для установки на них приложений и переноса данных из внутренней памяти. Чтобы решить эту проблему, необходимо создать на карточке раздел с ext3 или ext4. На него можно перенести все файловые атрибуты (включая владельца и права доступа), чтобы любое приложение могло работать так, словно запустилось из внутренней памяти.

Операционная система Windows не умеет делать на флешках больше одного раздела. С этой задачей легко справится Linux, который можно запустить, например, в виртуальной среде. Второй вариант — использование специальной утилиты для работы с логической разметкой, такой как MiniTool Partition Wizard Free . Обнаружив на карточке дополнительный первичный раздел с ext3/ext4, приложение Андроид Link2SD и аналогичные ему предложат куда больше вариантов.

Флешки и карты памяти быстро умирают как раз из-за того, что любое изменение в FAT32 вызывает перезапись одних и тех же секторов. Гораздо лучше использовать на флеш-картах NTFS с ее устойчивой к сбоям таблицей $MFT. Небольшие файлы могут храниться прямо в главной файловой таблице, а расширения и копии записываются в разные области флеш-памяти. Благодаря индексации на NTFS поиск выполняется быстрее. Аналогичных примеров оптимизации работы с различными накопителями за счет правильного использования возможностей файловых систем существует множество.

Надеюсь, краткий обзор основных ФС поможет решить практические задачи в части правильного выбора и настройки ваших компьютерных устройств в повседневной практике.

Формат хранения информации на жестком диске

Технологии шагнули очень далеко вперед

Как хранить информацию

  • Главная &nbsp / &nbspСтатьи &nbsp / &nbsp
  • Как хранить информацию

Как хранить информацию

Как правильно хранить информацию на компьютере

На жестком диске персональных компьютеров часто творится хаос. Причем такие проблемы испытывает практически каждый пятый пользователь компьютера. Почему так случается? Просто не все знают о том, как нужно хранить информацию на компьютере. На самом деле есть ряд четких правил, которые помогают структурировать данные на компьютере, при этом не испытывая никаких проблем. Давайте более детально изучим инструкцию о том, как же все-таки нужно хранить данные на жестком диске.

У вас должно быть как минимум два локальных диска. Не обязательно использовать несколько жестких, но локальные диски должны быть на компьютере. Если вы не понимаете, о чем вы говорим, то объясним намного проще. Когда вы заходите в «Мой компьютер», видите там есть такие пункты, как «Локальный диск С»? Буквы дисков у каждого пользователя могут быть разными. Это специальные разделы, которые есть практически на каждом компьютере. Они устанавливаются при настройке операционной системы. Лучше всего, чтобы у вас на компьютере их было не менее двух. На одном будет образ операционной системы, а на другом вы сможете хранить различную информацию. При этом вам не придется испытывать каких-либо проблем при переустановке операционной системы.

Вся информация на компьютере должна выглядеть структурировано. Все файлы разделите по папкам. Например, для учебы создайте один раздел, для развлечений другой, а для работы третий. На самом деле у вас может быть много таких папок. Храните их на втором локальном диске, отдельно от операционной системы. Вы можете делить все папки еще на несколько папок, и так до бесконечности. Старайтесь также текстовые файлы хранить в одном месте, музыку в другом, а программы в третьем. Это поможет вам при поиске той или иной информации на персональном компьютере. Также многие пользователи ошибаются при загрузке файлов. Они сохраняют их на рабочий стол, тем самым загрязняя его. Рабочий стол относится к системному локальному диску. Если вы будете переустанавливать систему, все данные со стола автоматически удалятся.

С такой большой структурой будет трудно перемещаться по тем папкам, которые вам нужны для использования постоянно. В таком случае вы можете создать ярлыки, перенеся их на рабочий стол. Таким образом вы сможете без особых усилий попадать сразу в тот раздел, который необходимо. Если вы удалите систему, то разделы никаким образом не пострадают, потому что на рабочем столе были только ярлыки на них. Это важная особенность, поэтому помните это. Если вам не нужны какие-то файлы или папки на компьютере, удаляйте их в корзину. При заполнении жесткого диска система может тормозить, поэтому лучше всего не доводить до этого.

ХРАНЕНИЕ ДАННЫХ НА ВНЕШНИХ НОСИТЕЛЯХ

При размещении информации на внешних носителях (речь, таким образом, идет о физическом уровне ее хранения) единицей информации является физическая запись— участок носителя, на котором размещается одна или несколько логических записей. Поименованная целостная со­вокупность однородной информации, записанная на внешнем носителе, называется файлом. Фактически файлявляется основной единицей хра­нения данных на B3Y, и именно с файлами производятся те или иные опе­рации преобразования (добавление данных, их корректировка и т.д.).

Для размещения данных на внешних носителях используют следую­щие типы файловых структур данных’.

К данным в файловых структурах возможны два варианта доступа — последовательный или произвольный. При последовательном доступе (режиме обработки) записи файла передаются из ВЗУ в оперативную память в том порядке, в котором они размещены на носителе. Напротив, в режиме произвольного доступа они могут извлекаться из файла так, как этого требует конкретная прикладная программа.

В последовательных файлах записи располагаются на носителе в порядке их поступления. Посредством буфера все они последовательно переносятся в оперативную память для обработки. Произвольный режим обработки здесь невозможен, так как для поиска записи по какому-либо признаку необходимо провести последовательный перебор всех запи­сей. Удаляемые записи физически исключаются путем создания нового файла.

Примером могут служить простые текстовые файлы (ASCII-файлы). Они состоят из строк символов, причем каждая строка оканчивается двумя специальными символами: «возврат каретки» (CR) и «перевод строки» (LF). При редактировании и просмотре текстовых файлов на экране монитора эти специальные символы, как правило, не видны.

В прямых файлах существует непосредственная связь между ключом записи и ее местоположением на носителе. При занесении логической записи в файлвыполняется преобразование или отображение ключа за­писи в адрес памяти, по которому она будет размещена. Основной режим работы в этом случае — произвольный, хотя возможен и последователь­ный режим обработки данных. Пространство памяти, занятое удаленной записью, может использоваться под новую запись, получившую тот же адрес.

На практике обработка записей нередко производится по нескольким полям. В этом случае преимущества прямых файлов практически сводятся на нет, поскольку обработка записей в них в режиме произвольного до­ступа возможна только по одному ключевому полю.

Вместе с тем очевидно, что повысить эффективность обработки дан­ных можно прежде всего путем упорядочения записей в порядке убывания или возрастания значений конкретного поля. Такое упорядочение прово­дится, как правило, не в исходном файле, а в созданном дополнительно (такой преобразованный по какому-либо ключевому полю файлназывает­ся инвертированным). При обработке файла по нескольким ключам при­ходится создать соответствующее количество инвертированных файлов. Поскольку каждый инвертированный файл в действительности содержит ту же информацию, что и исходный, такой подход требует больших объ­емов внешней памяти.

Для рационализации обработки данных можно использовать индек-сно-последовательные файлы — совокупность файла данных и одного или нескольких индексных файлов. В последних хранятся не сами исходные данные, а только номера (индексы) записей исходного файла, определя­ющие порядок его обработки по определенному ключу. Индексный файлобрабатывается в последовательном режиме, а файл данных — в режиме прямого доступа.

Файл с библиотечной организацией состоит из последовательно орга­низованных разделов, каждый из которых имеет свое имя и содержит одну или несколько логических записей. В начале файла имеется специальный

служебный раздел — так называемое оглавление, позволяющее получить прямой доступ к каждому разделу данных.

Контрольные вопросы и задания

1. Какие уровни представления данных используются при описании предметной области?

2. Дайте определение понятий «логическая запись» и «поле записи».

3. Раскройте особенности представления данных в ОЗУ и ВЗУ.

4. Приведите примеры линейных и нелинейных структур хранения данных.

5. Опишите типы файловых структур и особенности их организации.

Действительно, хотелось бы уточнить в вопросе — какой именно промежуток времени имеется в виду. Самым надежным на сегодняшний день носителем информации, действительно, является камень. Но даже камень следует бережно хранить, не пинать его и т.п. В принципе, если Вам действительно нужно хранить важные данные долгое время, Вам нужно в любом случае — не важно, какой именно носитель Вы выберете — строго соблюдать условия хранения.
Любые магнитные носители со временем подвержены снижению уровня намагниченности — поэтому кассеты, жесткие диски не годятся. Впрочем, жесткий диск совершенно спокойно может лежать десяток лет, не требуя к себе внимания, так как его специальный корпус позволяет снизить до минимума внешние электромагнитные воздействия на информационное покрытие. Но жесткий диск нельзя травмировать — даже легкий удар по корпусу, особенно в работающем состоянии, способен вывести его из строя. С другой стороны сочетание дешевизны, комфорта, емкости и долговечности (при бережном обращении), действительно, определяют мой выбор для хранения архивов — HDD.
Если Вам ближе по сердцу оптические накопители, то нужно понимать, что они подвержены деформации под собственным весом. Т.е хранить их можно вертикально (в горизонтальном состоянии они как бы становятся выпуклыми вокруг держателя, разумеется, с течением времени). Тонкая алюминиевая прослойка хотя и защищена лаком и пластиком, но все же может быть испорчена из-за прямых солнечных лучей, нагревания любого вида. Не говоря уже о случайных царапинах, которые могут быть из-за крошки, попавшей в коробку. Самое неприятное — повреждение алюминиевого покрытия, так как в этом случае данные невозможно восстановить.
В случае с самозаписанными дисками — там все еще хуже, так как при записи пины данных не выдавливаются (в отличие от заводской штамповки), а химическим образом изменяются на специальном покрытии, в результате химической реакции, вызванной лучом лазера на спец. составе. Этот химический состав значительно неустойчивее, в отличие от заводских болванок.
Исходя из всего вышеизложенного, я бы порекомендовал следующее:
двухуровневая система хранения данных.
1. Данные некритической важности — обычные DVD диски, хранимые вертикально в папках-органайзерах, в темном шкафу
2. Данные критической важности, но которые нужны периодически — обычные DVD-диски в двух экземплярах. Мастер-копия записывается и никогда не используется, каждые 3-4 года делается обязательная перезапись дисков. Мастер-копия должна быть проверена на чтение на двух-трех различных приводах. Хранение — в коробке, вертикально, в шкафу. Рабочая копия — хранение как угодно.
3. Архивы — жесткие диски HDD высокого качества (кстати, может быть даже 5400 rpm — медленнее крутится, выше надежность), в силиконовых корпусах (антистатические пакеты, упаковочные пакеты с пузыриками, пластиковые OEM-контейнеры). Хранение — в шкафу на нижней полке, без батареи поблизости.
Программное обеспечение для каталогизации и отслеживания старения мастер-копий — любое по вкусу. Я использую обычный WhereIsIt? для каталогизации.

Какой способ хранения информации считается самым надёжным и почему?

Сергей Чаукин 57 2 года назад технический специалист компании Kingston Technology

Хранение информации – тема, актуальная со времен наскальной живописи. В эпоху бурного технического прогресса и разнообразия предложений становится еще сложнее найти однозначно лучшее решение. В зависимости от объемов информации (ЦОД или ПК рядового пользователя), диапазон решений кардинально различается. Про хранение данных на уровне архитектуры ЦОД уже впору писать учебники и научные трактаты, в то время как на пользовательском уровне еще можно ограничиться более-менее лаконичным ответом. Пользователю следует подходить к решению вопроса хранения информации уже с пониманием того, насколько часто она будет востребована и какова степень ее конфиденциальности.

Сразу стоит заметить, что полностью доверять какому-то одному из методов хранения на 100%, как и класть яйца в одну корзину, ни в коем случае нельзя. Следует использовать сразу несколько методов, среди которых стоит выделить бэкапы – без них никуда. Далее можно рассматривать определенные сценарии.

Если речь идет об очень важной информации, доступ к которой не требуется каждый день, то самым радикальным решением было бы использование оптического диска, хранящегося в несгораемом сейфе. Конечно, у этого метода есть и свои недостатки: распространенность оптических приводов сегодня падает, да и если понадобится передать данные, сейф далеко не унесешь.

В ситуациях, когда важна конфиденциальность, может выручить USB-накопитель с возможностью шифрования DataTraveler 2000 (DT2000). Его основным преимуществом является способность шифровать данные «на лету», после чего доступ к ним без пароля становится невозможен. Даже при утере носителя, после 10 попыток ввода пароля, накопитель автоматически стирается. Kingston предлагает большое количество подобных устройств, со списком которых можно ознакомиться на сайте производителя.

Иначе следует действовать, когда речь идет об информации повседневного использования. Обычно это набор рабочих программ, игр, аудио- и видеоконтента. Чаще всего подобная информация хранится на установленном в ПК пользователя HDD или SSD. Сегодня преимущества обычных жестких дисков перед SSD в плане цены за единицу объема уже не так ярко выражены, а по скорости записи/чтения и времени отклика HDD уступают в десятки раз. Следует упомянуть и надежность, которая у SSD на сегодня по многим показателям выше – их отказоустойчивость давно сравнялась с рядовыми жесткими дисками. Не стоит забывать про «облачные» решения, ведь часть важного контента можно доверить сетевым ресурсам. Для того чтобы минимизировать риски попадания информации третьим лицам, рекомендую шифровать контент, который содержится на ПК. Для этого в самой операционной системе уже имеются все необходимые инструменты: для Windows это BitLocker, для Mac OS – FileVault.

Информация на мобильных устройствах обычно хранится на картах форматов SD или microSD. Ассортимент такой продукции безграничен, но предпочтение лучше отдать уже зарекомендовавшим себя на этом рынке брендам. Большая популярность отдельных марок объясняется повышенным уровнем контроля качества, ведь небольшой производитель в угоду низкой цене может и забыть о надежности. У Kingston помимо карт с разной скоростью записи есть и весьма интересное решение – карты, отвечающие промышленным стандартам работы в экстремальных условиях. Они производятся на базе MLC-чипов и могут использоваться в широком температурном диапазоне. Актуальное решение для тех, кто заинтересован в повышенной надежности носителя информации.

Задачу резервного копирования информации на мобильных устройствах можно решить с помощью «облачных» сервисов или подключением к ПК. Но хочется отметить доступный в продаже инструментарий, который позволяет сделать бэкап еще проще. Самым, наверное, востребованным решением для гаджетов на базе ОС Android может стать флешка DataTraveler MicroDuo (DTDUO) с поддержкой функции OTG. Это накопитель с двумя коннекторами: на одном конце у них USB Type-A, на другом – microUSB или USB type-C. Очень удобное решение для полевых условий, когда требуется срочно скинуть информацию или памяти на смартфоне/планшете не хватает. Для гаджетов на базе iOS и прочих у Kingston есть и более радикальное решение – беспроводной кардридер MobileLite Wireless G3. Путем беспроводного соединения можно легко и просто перекинуть необходимые данные на любой USB-накопитель или карту SD. Такой же способ будет актуален для фото/видеотехники.

ДРУГИЕ ОТВЕТЫ АВТОРА 15 0

Как хранится информация на компьютере

Понимание вопроса организации хранения информации в электронных устройствах является одним из важнейших моментов для тех, кто только начинает изучать компьютер. В этом материале вы узнаете, где и в каком виде хранятся личные данные пользователя, нужные программы и прочая необходимая информация.

Диски

Вся информация пользователя, включая операционную систему, программы, игры, документы и прочие данные, хранится на специальных носителях, называемых дисками. Внутри компьютера, как правило, размещается магнитный (в основном) или твердотельный накопитель, именуемый жестким диском (винчестер). Так же данные могут храниться на всевозможных внешних носителях, к которым относятся гибкие магнитные накопители (дискеты), оптические диски (CD, DVD, Blu-Ray), карты памяти (носители, используемые для хранения данных в цифровых устройствах, например фотоаппаратах, плеерах и т.д.), флэш-диски и прочие. При этом все они предназначены для долговременного хранения информации.

Работа со всеми перечисленными дисками практически однотипна. Каждому носителю или устройству хранения данных, операционной системой присваивается уникальное логическое имя в виде латинской буквы алфавита и двоеточия после нее. Устройствам для работы с дискетами дают имена «A:» и «B:». За ними, начиная с буквы «C», в алфавитном порядке следуют имена жестких дисков, которых может быть несколько. После жестких дисков, так же в алфавитном порядке начинают присваиваться имена для оптических приводов (устройств чтения/записи оптических дисков). Затем следуют названия сетевых дисков и устройств считывания данных с флэш-карт.

Информация, хранящаяся на компьютере, измеряется в байтах. При этом самая маленькая единица измерения данных называется битом. В одном байте содержится 8 бит.

Современные программы и данные пользователей имеют размеры в несколько десятков и сотен тысяч байт, так что в реальных условиях используются гораздо более крупные единицы измерения: килобайты, мегабайты, гигабайты и терабайты.

Единицы измерения информации

Например, данная страница, которую вы читаете, занимает места на жестком диске равным всего Кб. Сами же жесткие диски имеют емкости, начиная от 80 Гбайт, и доходят до 3 Терабайт. Средний объем оперативной памяти у современного компьютера составляет от 2 до 4 Гбайт. Оптические диски могут разместить в себе от 700 Мб до 50 Гб информации в зависимости от типа. Всевозможные карты памяти и флэшки имеют емкости от 512 Мбайт до 128 Гбайт.

Файлы

Основной единицей информации на компьютере является файл. Это некий контейнер, внутри которого хранится какое-то количество информации, объединённое определенной смысловой составляющей. Файл может быть какой-то таблицей, текстом, программой, фотографией, видеороликом, музыкальной композицией и так далее.

Каждый файл имеет собственное имя, которые ему присваивает пользователь в момент его создания и записи на диск. Его имя состоит из двух частей – самого имени (от 1 до 255 символов) и расширения (до четырех символов), разделенных точкой. Например, у файла с названием name.txt, «name» является его именем, а «txt» – расширением. Расширение для файла является необязательным.

Расширения имен файлов, определяют их тип, то есть принадлежности к тем или иным программам, способы создания и назначения. То есть, в большинстве случаев, по расширению файла можно понять, какого рода информацию он содержит. Например:

  • exe, bat, com, msi – как правило такие расширения имеют программы и исполняемые файлы.
  • sys, dll – системные файлы и библиотеки.
  • txt – файлы, содержащие внутри себя текст.
  • doc, docx– файлы, созданные с помощью популярнейшего тестового редактора Word (Ворд).
  • xls, xlsx – файлы, созданные с помощью редактора электронных таблиц Excel (Эксель).
  • jpg, tif, bmp, gif, png – графические файлы (фотографии, картинки).
  • avi, mov, wmv, mkv – видеофайлы (фильмы, ролики).
  • mp3, wav, wma– звуковые файлы (музыкальные композиции, звуковые дорожки).

Папки

Как правило, на жестком диске в процессе эксплуатации компьютера хранится огромное количество всевозможных файлов. Например, только одна операционная система после установки создает на диске несколько тысяч собственных файлов, необходимых ей для корректной работы. А если к ним приплюсовать еще те, которые создаются при установке всевозможных программ и ваши личные данные, то цифра получится очень впечатляющая.

Как вы понимаете, если все эти файлы свалить в одну кучу, то впоследствии найти нужные вам данные было бы практически невозможно. Именно поэтому в компьютерах используется структурированное хранение информации. Суть этого метода в том, что файлы объединяются в отдельные группы по тому или иному признаку. Эти группы получили название Папки или Каталоги. Они так же, как и файлы имеют собственные имена, только без расширений.

Выбор критериев объединения файлов в папки зависит исключительно от ваших целей и пожеланий. Внутри папок, вы можете создавать другие папки, в которых так же можно создавать необходимое количество каталогов. Единственное условие – все объекты, находящиеся в одной папке, должны иметь разные имена. Файлы и каталоги с одинаковыми именами можно хранить в разных папках. Вложенные папки образуют структуру, называемую деревом папок.

Дерево папок (каталогов)

При такой организации хранения данных, каждый файл, хранящийся на каком-либо носителе информации, имеет свой собственный путь. Путь к файлу – это определенная последовательность вложенных друг в друга папок, начиная с той, в которой пользователь находится в текущий момент. При написании пути имена разных каталогов и собственно файла разделяют символом обратной наклонной черты («»).

Посмотрите на рисунок, например, если вы находитесь в папке Документы, то путь к файлу Диплом.doc, будет выглядеть так: ДокументыУчебаДиплом.doc

Из понятия вложенности каталогов следует и еще одно важное определение – полное имя файла – путь к файлу от имени диска, на котором он находится. В нашем примере, полное имя файла Документ.xls будет следующим: C:ДокументыХоббиДокумент.xls. Так же полное имя файла называют абсолютным путем к файлу.

Итак, теперь вы знаете, что вся электронная информация (программы, документы, фотографии и прочее) хранится в файлах на специальных носителях – дисках или картах памяти. Для удобства поиска и сортировки данных, файлы объединяют по определенным признакам в группы, называемые папками. Сами же файлы имеют расширения, с помощью которых можно понять, какого типа информация в нем содержится, а названия файлов, лишь часть его полного имени.

Бесплатные программы русские. Программирование 1С

Рассказываем детям и взрослым, и даже пожилым людям о том, где компьютер хранит всю информацию

Статья написана очень простым языком. Опытные пользователя компьютера могут пропустить текст.

Об информации и дисках компьютера

Вы слышали, что внутри компьютера много информации. Что компьютер может «лазить в интернет», хранить «фотки», запускать игры, печатать тексты и еще в нем есть «какие-то программы».

В целом это правильно. Но требуется еще кое-что узнать, чтобы легче понять суть.

Когда мы включаем компьютер, то можем увидеть на экране какие-то надписи, смену картинок, мелькания прямоугольных рамок и так далее. Откуда это все берется? Все содержимое компьютера (тексты, фотографии, музыка, фильмы, программы, игры) называется «информацией». Она хранится внутри компьютера.

Но где именно все это находится?Посмотрите на свой компьютер. Подумайте.. выцарапано гвоздиком на задней крышке? Нет. На маленьких листочках бумаги, скрученных в рулон и засунутых в дырочку снизу? Вряд ли.

Информация в компьютере хранится на специальном таком устройстве, в такой маленькой железной коробочке, с названием «диск»

Диск — это такое специальное устройство, «приборчик», «коробочка» — предназначенное для хранения всей информации, которая уже имеется на компьютере. Итак, мы имеем компьютер, а внутри компьютера диск, на котором хранится информация.

Для многих, кто еще новичок в компьютерных делах, понятие — информация — довольно расплывчатое. Давайте сделаем его более конкретным, чтобы нам стало легче обсуждать всё остальное. Представьте, что у вас есть бумажный блокнот, в который вы записывали дни рождения ваших друзей, родственников и всех, кто вам дорог. Раз в неделю вы просматриваете этот блокнот, и говорите себе: «Так.. надо не забыть поздравить друга Васю с днем рождения, через два дня». А в другой раз: «О! Чуть не забыл. Завтра день рождения у моего ручного попугая. Надо ему купить что-нибудь вкусненького.»

Я хочу сказать, что содержимое вашего блокнота — это и есть информация. Вы ее просмотрели (поискали в ней) — и сделали нужные выводы. И никого не забыли поздравить вовремя. А теперь представьте — строчки из вашего блокнота оказались на экране компьютера. Пусть вы пока не знаете, как они там оказались, но представить это вы можете. И вы теперь вместо блокнота читаете надписи на экране. И теперь на экране, вместо блокнота, записаны даты рождения друга Васи, попугая Кеши или министра финансов Гондураса. Что это означает?

Что даже в Гондурасе есть финансы. Это шутка. На самом деле это означает, что информация, к которой вы привыкли и которая раньше была в вашем блокноте — теперь хранится в вашем компьютере. А где именно в компьютере она хранится? Правильно! На диске.

Вы слышали, что на компьютере можно смотреть фильмы. А что такое фильм? Правильно — это тоже информация. На компьютере можно слушать музыку — это тоже разновидность информации. Только эта информация предназначена для ваших ушей. На компьютере можно смотреть фотографии — это информация для ваших глаз.

Давайте сделаем вывод: Все, что вы можете увидеть на экране компьютера, или услышать от компьютера — это и есть ИНФОРМАЦИЯ.

Более подробно о хранении информации

Я говорил вам, что информация в компьютере хранится на диске. На самом деле под словом «диск» подразумеваются различные технические устройства, различные технические «штуки», которые могут находится постоянно внутри компьютера, а могут время от времени подключаться к нему, а затем — отключаться. Все эти устройства объединяет одно — они хранят внутри себя информацию. И позволяют компьютеру, к которому они подключены , эту информацию извлекать на свет.

Например, если у вас ноутбук или настольный компьютера, то внутри, как правило, имеется жесткий диск. Это действительно некая, очень полезная металлическая коробочка, которая спрятана внутри корпуса компьютера. Ее можно увидеть, только если открыть внутренности компьютера. Она установлена внутри постоянно, компьютер нуждается в ней, на ней он хранит важную информацию, которая требуется чтобы компьютер мог вообще включиться и начать работать. Но в дополнение к важной компьютерной информации, жесткий диск позволяет хранить ваши любимые фотографии, фильмы, музыку, электронные книжки и так далее. Насколько хватит свободного места.

Давайте еще немного углубимся в технические детали. Совсем чуть-чуть. Я говорил, что жесткий диск — это металлическая коробочка. Но что же внутри этой коробочки? И почему же коробочка называется — жесткий диск — если это вовсе не круглый предмет, а прямоугольный?

Дело в том, что внутри этой коробочки действительно есть диск, металлический, он действительно вращается моторчиком, который спрятан внутри этой коробочки. Помните виниловые пластинки с записями ансамбля «Орэра» или мастера советской патриотической песни Иосифа Кобзона? Вот, внутренняя круглая «пластиночка» жесткого диска чем-то напоминает пластинку с мелодией. Назначение их обеих — это хранить записанную информацию. Надеюсь, вы понимаете, что мелодии на виниловой пластинке вполне можно называть информацией.

Представьте, вам сегодня повезло. Вам удалось купить в сельмаге пластинку с новыми песнями «Сябров». Но если у вас нет проигрывателя, граммофона, в который можно вставить эту пластинку — вы не сможете насладиться музыкой. Останется просто крутить пластинку на пальце и самому петь. Значит, кроме непосредственно диска (пластинки) нам требуется еще и устройство, которое будет проигрывать диск. Выразимся по-научному. Мы имеем «носитель информации» — диск, пластинку. Чтобы использовать эту информацию (прослушать музыку) — нам нужно «устройство чтения» информации — проигрыватель.

Так вот, жесткий диск (коробочка внутри компьютера) содержит в себе одновременно и «носитель информации» и «устройство чтения». Если мы возьмем виниловую пластинку и приклеим ее навсегда к проигрывателю — у нас получится жесткий диск. Носитель информации, в этом случае, неотделим от устройства чтения. Поэтому из жесткого диска нельзя вытащить круглую пластиночку, на которой записана информация. Он сломается, поэтому он — НЕСЪЕМНЫЙ.

Но существуют и СЪЕМНЫЕ устройства для хранения информации. Видели когда-нибудь оптический диск? Их еще называют DVD («ди-ви-ди») дисками, CD («си-ди») дисками. Сейчас на таких дисках продают музыку, фильмы, компьютерные игры. На самом пластиковом диске записана информация, но устройство чтения (проигрыватель) находится отдельно. Например, оно вмонтировано в компьютер и имеет сбоку узкую щелочку. В эту щелочку можно вставить нужный оптический диск, посмотреть фильм, затем вытащить этот диск, вставить другой — с новым фильмом. В этом случае мы видим, что устройство чтения оптических дисков — это отдельная «штуковина», а сама информация, которую это устройство может проигрывать — находится на оптических дисках, называемых DVD или CD — дисками. Эти диски обычно хранят на полочке шкафа, в пластмассовых коробочках.

Еще в компьютере бывает встроено устройство для чтения гибких дисков. Это отдельная разновидность диска. Эти диски тоже можно вставлять и вынимать из компьютера. На такой диск помещается небольшой объем информации, поэтому такие диски выходят из употребления. На многих современных компьютерах и нотебуках устройство для чтения гибких дисков отсутствует.

Итак. Давайте нарисуем короткую картину сказанного. Мы имеем компьютер, внутри него есть жесткий диск. Который нельзя вытаскивать, он все время внутри корпуса. На нем есть информация. Это понятно? Но в то же время внутри компьютера может располагаться еще и устройство чтения DVD-дисков, со щелочкой сбоку, куда можно вставлять любой оптический диск. В самом устройстве чтения DVD нет информации, но если мы в него вставим оптический диск — информация появится. Устройство сможет прочитать информацию со вставленного нами диска. Таким образом у нас в компьютере будет одновременно два хранилища информации: жесткий диск и устройство чтения DVD-дисков со вставленным в него каким-нибудь диском (с новой компьютерной игрой, например)

http://prostocomp.net/bezopasnost/gde-xranit-dannye-na-kakie-nakopitelyax-xranit-fajly-dlitelnoe-vremya.html
http://timeweb.com/ru/community/articles/tipy-faylovyh-sistem-ih-prednaznachenie-i-otlichiya
http://iclubspb.ru/kak-hranit-informatsiyu/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *